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A B S T R A C T  

It is proved that if the probability P is normalised Lebesgue measure on 
one of the l~ balls in l:t n, then for any sequence t l , t 2 , . . .  ,t,~ of positive 
numbers, the coordinate slabs {[xil ~ ti} are subindependent, namely, 

P {Ixil < ti} G P({[ad _< ti}). 
1 

A consequence of this result is that the proportion of the volume of the 
l~ ball which is inside the cube I-t ,  t] n is less than or equal to f,~(t) = 
(1 - (1 - t)'~) '~. It turns out that this estimate is remarkably accurate 
over most of the range of values of t. A reverse inequality, demonstrating 
this, is the second major result of the article. 

1 .  I n t r o d u c t i o n  

Schech tman  and  Zinn, in [1], proved t ha t  the  p ropor t ion  of the  volume 

left in the  l~ bal l  af ter  removing a t -mul t ip le  of the  l~ bal l  is of order  

e x p ( - - c n t  p) when p < q. Recal l  t ha t  the  uni t  l~ bal l  which is deno ted  B~ is 

the  set {x = ( x l , . . . , x n )  e R n :  )-'~-,~1 Ix~[ p <- 1}. Taking  l imi ts  as q ~ oo, 

t hey  also men t ion  some resul ts  abou t  the  p ropor t ion  of the  volume of the  l~ bal i  
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which is outside the  cube I - t ,  t] ~. If P is as in the abstract ,  their results in this 

par t icular  case are: 

if t >_ ~-((logn)/n) 1/p, then  P({llxl l~ > t}) < exp (-TntV/p),  and 

if 2In 1/p < t < �89 then P({llxl l~ > t}) > exp (-FntP/p),  

where 7, F and T are universal  constants .  

We consider only the case q = cc here, but  our results are much stronger.  

For s implici ty  we shall i l lustrate this only in the case p = 1 a l though the  mos t  

i m p o r t a n t  result  will be described for all p. This  result is the subindependence  

of coord ina te  slabs, s ta ted  below as Theorem 1. 

THEOREM 1 (Subindependence of coordinate  slabs): I f  the probability P is 
normalised Lebesgue measure on one of the l~ balls in R n, then for any sequence 

tl, . . . , tn of positive numbers, 

P {Ixil <_ ti} <_ P({lxil < ti}). 
1 

The  par t icu la r  case p = 1, tl . . . . .  tn of Theorem 1 gives an upper  bound  

for the  p ropor t ion  of the volume of the l~ ball which is inside the  cube [ - t ,  t] n. 

Since the  p ropor t ion  of the  volume of the l~ ball which is inside a coordinate  

slab of wid th  2t is 1 - (1 - t) n when t <_ 1, the result in this case is given by the  

following Corollary. 

COROLLARY 1: I f  Fn(t) is the proportion of the volume of the l'~ ball inside the 
cube [-t ,  t] n, then 

Fn(t) <_ fi~(t) = (1 - (1 - t)'~) '~. 

Al though  F~(t) is the  function E~l/tl(-1)J('~)(1 - i t )  '~, which is a spline with 

m a n y  knots ,  we prove in Theorem 2 tha t  the polynomial  fn(t) = (1 - (1 - t)n) ~ 

is an as tonishingly good approx imat ion  to  F~(t),  at  least when F,~(t) is not  too 

small.  

THEOREM 2 (An es t imate  in the  reverse direction): With Fn(t) as above, 

1 - Fn(t) 

1 - fn(t) 

as n ~ 00, uniformly in t. 

T h e o r e m  2 enables us to describe the threshold behaviour  of F~ (t) much more  

precisely t h a n  Schechtman and Zinn. For example,  if t = ( l o g n -  l o g c ) / n  then  

the  informat ion  we get f rom Theo rem 2 is tha t  F~(t) should be  someth ing  like 
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fn ( t ) ,  w h i c h  in turn  is s o m e t h i n g  like (1 - e x p ( - l o g n  + l o g c ) )  n = (1 - c / n )  ~ ~_ 

e x p ( - c ) .  

2. M e t h o d  

In this section we will briefly explain the crucial points of the proofs of these two 

Theorems for the simplest case when p -- 1 and tl . . . . .  tn = t. 

The proof of Theorem 1 (the upper bound for Fn) depends on a very conve- 

nient interaction between two different equations expressing Fn and its derivative 

in terms of Fn-1.  Each of these equations is proved using a simple geometric 

argument: they can readily be combined to give a differential inequality for F~ 

which integrates up to the stated result. 

These equations are 

/0 F=(t) = n (1 - -  u)n-l gn_l du, 

F~(t )  = n2(1  - t )~- lFn_l  ~ . 

The upper  bound is extremely precise as long as F~(t) is not too small. The 

easiest way to state this is to write it as an estimate for the volume outside the 

cube, namely for 1 - F~(t). This is what we do in Theorem 2. 

The proof of Theorem 2 (a lower bound for Fn) is technically more compli- 

cated although it is much less delicate. The crucial point is to show that  at its 

maximum, the function (1 - Fn)/(1 - f~) is dominated by the value of a related 

function, which in turn can be shown to be small by means of the (rather precise) 

upper  bound already proved. 

In facL this related function, say Gn(t), is not as small as we would like it to be 

in the whole interval (0,1), but it behaves nicely in a smaller interval [t~, 1/2], for 

some value of t,~ which is roughly like (log n - log log n)/n .  I t  is in this range tha t  

(1 - Fn)/(1 - f~) actually attains its maximum. However, for technical reasons, 

it is simpler to show directly that  (1 - F~)/(1 - fn) is small outside this interval. 

3 .  T h e  u p p e r  b o u n d  

In this section we shall give a detailed proof for the simplest case of Theorem 

1, p = 1. The other cases are simple generalizations of this one, so only a brief 

sketch of the proof will be given then. 
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THEOREM 1 (Subindependence of coordinate slabs): If the probability P is 

normalised Lebesgue measure on one of the l~ balls in R n, then for ~ny sequence 

t l , .  �9 t ,  of positive numbers, 

P {fx~[ _< t,} _< e({Iz~l _< t~}). 
1 

Proof of Theorem 1 for the case p = 1, tl . . . . .  t,~ = t: Except in the trivial 

case t > 1 the problem is to show that the proportion of the volume of the unit 

l~ ball which is inside the cube Q,~(t) = [-t ,  t] '~ is bounded from above by the 

function fn(t) = (1 - (1 - t)'~) ". This proportion will be denoted by F,~(t). 

The proof uses the following two equations: 

/0 (3.1) F.( t )  = n ( 1 - u ) " - ' F . _ l  ~ du, 

(3.2) F,~(t) = n 2 ( 1 - t ) n - l F ~ _ ,  -1-~  . 

Since F,~-I is an increasing function, F,~-x (1---~) is increasing in u. So from 

(3.1) we get 

Fn(t) <_ nF,-1  ~ (1 - u)'~-ldu. 

For convenience, we shall abbreviate the integral 

f0 t(1 _ u)n_ld u = 1 - ( 1  - t )  n 

n 

by Y,(t) .  Then (3.2) and the inequality can be written 

(3.3) F~(t) <_ nF,,-1 ~ Yn(t), 

(3.4) d ( t ) d  
- ~ F . ( t )  = ,~2F._1 i - 7 - i  -di Y " ( t )  

i f  we e l iminate  the factor we get 

~ f . ( t )  ~ Y . ( t )  
(3.5) F . ( t )  - n 

and, by integrating from t to 1, we get the desired result 

F. ( t )  < ( Y . ( t )  '~" = (1 - (1 - t)") ~ 
- \ r , , (1 )  J 
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I t  remains  to prove the  relat ions (3.1) and (3.2). 

For the  first one, let H ,  = {x E l:t '~ : x l  = u}. Then  

F.(t) = VoMQ,.(t) n Br) 
Voln(B{ ~) 

n! fo t = ~ 2  Vol~_l(G(t) nBrnH~)du 

n! fot = 2,~_ 1 V o l ~ - l ( Q ~ _ l ( t )  n B~ -1 (1 - u))du 

= n (1 - u) n-1V~ ffl B ~ - I  (1 - u ) ) d u  
Voln_ l (B?  -1 (1 - u)) 

/: = n ( 1 - u ) n - l F , _ l  ~ - u  du. 

For the second one, put  Hn(t) = Voln(Qn(t) N B'~). Since 

H~(t) ,~! 
F~(t) - v ~ )  = ~ H ~ ( t ) ,  

to find ~tFn(t) it suffices to find ~tH~(t), which is 

and thus 

d Hn(t) = lim Hn(t + h) - H,~(t) 
h-+O h 

= 2nVoln_l(Q,_l(t) A B [ - 1 ( 1  - t)) 

d Fn(t) = n 2V~ A B [ - I ( 1  - t)) 
Voln_ l (B~ -1)  

= n2(1 _ t p _ l  Vol._l(Q._l(t) n BI~-' 0 - t)) 
V o l n _ l ( B ~ - l ( 1  - t))  

= n2(1 -- t)n-lFn_l ~ " 

P r o o f  of  Theorem 1 for the case p = 1: For convenience, let F,~(tl,... ,t,~) 
denote  the  propor t ion  of the volume of the  unit  l~ ball which is inside the  cuboid 

Qn(h, . . .  ,t,~) = [ - t l , t l ]  x . - .  x [ - t m t ~ ] .  The  Theo rem sta tes  t ha t  

F,~(t,,... ,t, 0 < Y,~(tl______~)... Y,~(t,~_____~) 
Y~(1) Y~(1) 

where Y,~(t) is the integral  fo in ( l ' t } (1  - u)n-ldu. 
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Of course, if one of the ti's is zero, then Fk(tl,... ,tk) = 0 and the inequality 

is trivial. It is also trivial when all the ti's are greater than 1. 

If neither of these trivial cases applies, we prove that as long as for some i, 

ti is less than 1, the value of the function Fn at point ( t l , . . . ,  t,~) is dominated by 

an appropriate multiple of the value of Fn, at the point with the ith coordinate 

replaced by 1 and the rest remaining the same, i.e. 

(3.6) fn(tl,..., tn) ~ ~ f n ( t l . . . ,  t i - 1 , 1 ,  t i + l . . . ,  tn) .  
xn(l) 

So, if we suppose, without loss of generality, that 0 < ti < 1 for i = 1 , . . . ,  k 

(1 < k < n) and ti > 1 for i = k + l , . . . ,  n, then we will have in turn the following 

inequalities: 

Z~(tl) f~(1 ' Fn(tl,...,tn) <_ y - -~  t2,...,tn) 

<- Y'~(tl) ~ ( )  .. ,t~) 

< Y~(tl) Y~(tk)F~(1 ' 
Y~(1) ""  Y - - ~  . . . ,  1 , t k+ l , . . . , t , d .  

Since F,~(1,. . . ,  1, tk+l . - . ,  t,~) = 1 the proof is complete. 

Thus, the crucial point is to prove (3.6). Without loss of generality, we will 

prove this for i = 1, namely the relation 

(3.7) Fn(tl ... t,) <_ Yn(tl) F, ~1 ' ' Y n ( 1 )  n ,  , t 2 , . . . , t , ~ )  

w h e n 0 < t l  < 1. 

To do this, we again combine two equations. The first one relates F~ and F,~-I, 

and the second one relates F~-I  and the partial derivative of F,~ with respect to 
the first coordinate, at point h .  These are 

fot ( t 2  t , ~ ) d  u (3.8) Fn(tl,...,tn) = n (1-u)n-lF~_l 1 - u " " '  1--u 

~_ rtFn-1 1 -- t l " ' "  1 ---tl (1 -- u)n-ldu 

= nF~_l l - t 1  " " l - - - h  Y,~(tl) 

and 

0@1 ( t 2 1 _ t l , . . . , l _ t l  tn ) (3.9) F ,~ (h , . . . , t n )  = n (1- t l ) '~ - lF ,~_ l  
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Eliminating f n-1 ( ltgtl 

(3.10) o-~ Fn(tl , .  �9 ,tn) 

which integrates to (3.7). 

COORDINATE SLABS IN l~ BALLS 

, . . . ,  ~ l Y n ( t l ) .  = Fn-1 1 Z t l  1-~-tl 

t~ , we get 
' " " " ' l - - t l  

> d~ v~(tl) 

F~( t l , . . . , t n )  - Y~(tl) 

The proofs of (3.8) and (3.9) are very similar to the proofs of (3.1) and (3.2). 

Sketch of the proof of Theorem 1 for the case p > 1, tl . . . . .  tn -- t: Since 

the proof of this case does not differ too much from the one given for the first 

case, we shall only write the two basic equations that  are used in place of 

(3.1) and (3.2). A slightly different notation is used here. YP(t) stands for 
f0min{l't}(1 - up)(n-1)/Pdu, VPn for the volume of the B~ ball, and F~(t) for the 

proportion of the B~ ball, which is inside the cube Qn(t). 

The relations are as follows: 

Lt ( (  t, p )l/p) 
2vP-1 (1 - -  ?2P)(n-1)/PFPn_ 1 ~ du (3.11) FP(t) - v~ 

vnp = n - 1  t \"~-~ ] ) YP(t) 

and 

(( ,, 2nvP-1 (1 -- tP)(n-1)/PFP_ 1 (3.12) d FP(t) - vV ~ 

- F _I 

Remarks: (1) (3.5) and (3.10) actually state that  the functions F,~(t)/(Yn(t)) '~ 
and Fn(t, t2 , . . . ,  tn)/Yn(t) are increasing in t. 

A consequence of this is that  the function Fn(t l , . . .  , tn ) /Yn( t l ) ""  Yn(tn) is 

increasing in each coordinate. 

(2) I f 0 < t ~ <  l f o r i = l , . . . , k  ( l < k < _ n )  a n d t i > _ _ l f o r i = k + l , . . . , n ,  

then Theorem 1 states that Fn( t l , . . .  ,tn) < (1 - (1 - tl)'~) . .- (1 - (1 - tk)'~). 
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4. T h e  lower  b o u n d  

Using the notation introduced in the previous section, we shall prove that the 

function fn(t)  is not only an upper bound (see Theorem 1), but it is also a very 

good approximation to Fn(t), within the interesting range of t. More precisely, 

we prove that  the function (1 - Fn(t))/(1 - fn(t))  converges to 1 uniformly in t, 

as stated in the next Theorem. 

THEOREM 2 (An estimate in the reverse direction): 

1 - F ~ ( t )  ( ( logn)  a ) 
1 - f ~ ( t )  - 1 + 0  

uniformly in t. 

We focus our attention on the point tm~, where ( 1 -  F n ( t ) ) / ( 1 -  L,(t)) at- 

tains its maximum value. In the first Lemma below, we find a fimetion G,~(t) 

which dominates (1 - F~(t ) ) / ( t  - fn(t))  at tma,,. This related function is proved 

to be small in a particular range, where tmax actually occurs. Outside this 

range (1 - F~(t)) /(1 - fn(t))  is small for very simple reasons. To avoid technical 

difficulties, we don't  actually prove that tmax is in this particular range. 

LEMMA 1: At its maximum point, the function ( i - F , ~ ( t ) ) / ( 1 - f n ( t ) )  is 

dominated by the value of the function 

n - 1  n - - 1  

I 0<t<1/2, 
a ~ ( t ) =  [ 1 - ( 1 - , )  j , 

[1 - (1 - t F l  - ( ~ - ' )  , 1 / 2  < t < 1. 

Proof of Lemma 1: Before embarking upon the proof it is perhaps worth 

mentioning that it depends critically upon Theorem 1 (the upper bound for Fn) 

already proved. 

It is easy to check that ( 1 -  F,~( t ) ) / (1-  ],,(t)) -+ 1 as t ~ 0 or t --+ 1. So 

( 1  - F,~)/(1 - f~) attains its maximum in (0,1). So 

_-0, 

i.e. 
1 - F,~(tmax) = ~tFn(tmax) 

1 -/~(tm~x) d " ~ A ( t m a x )  

But ~F,~ (t) has already been calculated in (3.2). Substituting this in the above 

t relation, as well as ~ fn (max ) ,  we get that 

1 -- fn(tmax) (1 - (1 -- tm~x)") '~-1" 
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Of course, 

] = 1 /2< tmax  < 
tmax 

F n - 1  1 - t ~  1 if 1. 
/ 

To prove the required inequality for 0 < tmax <_ 1/2, it is sufficient to apply 

( tm~ ) . T h u s w e g e t  Theorem 1 in order to dominate F,~-I 1--tm~, 

1 -- Fn(tmax)  

1 - A(tmax) 

/ 
1 -  | 1 -  traax 

1--tmax / 
_< \ 

1 - ( 1  - t m ~ x )  ~ 

n--1 

= Gn(tmax) .  

Proof  of  T h e o r e m  2: As we have already mentioned, for technical reasons, we 

shall divide the interval (0,1) into three parts, and we will examine separately 

the possibilities that  tm~x occurs in each of these parts. 

More precisely, choose t~ such that (1 - t,~) '~ = ( l o g n ) / n  and consider the 
1 1 intervals (0,tn), [t~, �89 and ( ~ , ) .  

t~ is something like (log n -  log log n ) / n  and is certainly less than (log n ) / n .  

Numerical evidence indicates that  tn~ax is about (log n ) / n  but we eliminate the 

other intervals directly. 
1 We shall prove that for t E (~, 1), 

1 - F ~ ( t )  1 

1 -  fn(t) ~ l +-.n 

It is quite easy to calculate that  F , ( t )  = 1 - n ( 1 - t )  '~ when t E (�89 by 

w h e r e  Fn_ 1 ( ~ )  = 1. integrating (3.2) 
X / 

So, the inequality we want to prove becomes 

n ( 1 - t )  '~ < 1 +  1 
1 - ( 1 - ( 1 - t ) n )  n - n 

If we put  s = (1 - t) '~ (so that  s < 1/2n), the problem is to check that  

ns  1 
< 1 + - ,  

1 - ( 1  - ~ ) ~  - n 

i.e. that  
n 2 

(1 - s)  n < 1 - ~ - ~ s ,  

which is certainly true if s < 1/2 n. 

We shall prove that  for all t in (O, tn)  not only is the 

(1 - Fn(t)) / (1 - f~(t)) close to 1, but so is the function (1 - f~(t)) -1. 

function 
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Since fn is increasing, 

f~(t) = (1 - (1 - t)~) ~ 

< (1 - (1 - t,,)~) n 

1 
_< e x p ( -  log n) = - .  

n 

Hence 

1 
1 - f ~  = 1 + 0  . 

Finally we s tudy  F~(t) for t E [tn, �89 By Lemma 1, 

1 -- Fn(tmax) 

1 -- fn(tmax) 
<_ Gn(tmax). 

We shall prove tha t  G~(t)  is as small as required in the range t E [tn, �89 namely 

tha t  

G~(t)  _< 1 + 0 ( ( l ~  

By the first est imate in Lemma 1, Gn in this range is 

G~(t)  = [1 + 

/ n - 1  
(1  - t )  ~ { 1  t - ,  - 1 - ~ ]  

1 - ( 1  - t )  '~ 

n - 1  

Thus, it is enough to prove tha t  

(1 t) ' ~ -  (1 t 

1 - ( 1  - t )  n 
 O(l'o nl ) 
- -  ~ t 2  " 

Indeed, since the factor 1 - (1 - t) n is like a constant in this interval, it suffices 

to show tha t  (1 - t) n - ( 1 -  t i - ~ ]  is dominated by the decreasing function 

n(1 - t)'~-2t 2 (decreasing for t > 2/n) ,  which at tn is as small as required. 
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However, 

( l _ t ) n _ ( l _  t ~n- i  (1 t ) n 
E:~] < (i - t) ~ - i - t 

~i 1-t m r~un -- 1 d u  

t 2 
< ~ n ( 1  - t )  n - 1  
- 1 - t  
-- n ( 1 -  t)n-2t 2 

_< n(1 - tnj~n-2t2n 

_< 2n(1 n 2 - tn)  t~ 

< 2nlOg n (log n) 2 
-- n ?%2 

[0ogn)3  

which completes the proof. 

Note added in proofs: The authors recently found a shorter proof of Theorem 

1 which replaces many of the formulae with a rearrangement argument. 
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